
Delphi Internals: How not to
Write an Operating System (4)
Disk formatting – nearly there but not quite!
by Dave Jewell

Or: A report on the correlation
between writing articles on disk
formatting and suicide amongst
computer journalists...

For all of us, there are certain
memorable moments in our

lives where, with the benefit of
hindsight, we fervently wish that
we’d done things differently. One
such moment came when I stu-
pidly agreed to write a few articles
on the subject of floppy disk
formatting. In the words of
Proverbs 7 verse 22, I was “like an
ox going to the slaughter...” Little
did I know the blood, sweat and
tears that would accompany this
seemingly innocent subject.

The fact is that disk formatting is
something of a minefield. In the
course of writing this month’s arti-
cle, I must have re-written the code
half a dozen times in an attempt to
produce something that would
work on all three of the machines I
routinely use. I have aged ten years
in the last couple of weeks, my
hands tremble slightly at the key-
board and sometimes I wake up
screaming in the middle of the
night...

Does this sound like a thinly-
veiled attempt to justify the late
delivery of this missive into the
eager hands of our esteemed
Editor? Well, yes, there’s probably
an element of self-justification
here, but it’s nevertheless true that
if you want to create a disk format-
ting routine that will work all the
time on lots of different machines,
with a large number of different
BIOS manufacturers, then quite a
bit of experimentation is required.
To make it all that much more diffi-
cult, creating code that works in
DOS is one thing, but to get some-
thing that works properly in
Windows is quite another.

This month’s article presents
the code to format the tracks of a
floppy. In addition, the code builds
a boot block and writes this to the
disk. In next month’s (hopefully
final) article on disk formatting, I’ll
finish with the code that writes an
initial FAT (File Allocation Table) to
the disk and then wrap the whole
thing up into a Delphi program with
a nice user interface.

Media Sensing Revisited
Last month I introduced a routine,
GetMediaType, to sense the type of
diskette inserted into a drive. A
5.25 inch drive can support 360Kb
and 1.2Mb floppies (remember, we
decided last time not to support
the really old formats) whereas a
3.5 inch drive supports 720Kb,
1.44Mb and 2.88Mb disks. The pur-
pose of the GetMediaType routine
was to find which type of disk was
in the drive, to be used when quick
formatting a disk.

Well, the bad news is that this
routine is now defunct. It’s been
replaced with SenseMediaType (see
Listing 1). This procedure is more
flexible than its predecessor be-
cause it takes a flag, fDefault, that
determines whether we’re talking
about the disk installed in the drive
or the default capabilities of the
drive. Let me explain: suppose you
stick a 1.44Mb disk into drive A:
and tell our not-yet-finished pro-
gram that you want to quick-format
it. The program has to read the disk
to determine its current capacity
so that it can then set up a new BPB
(Bios Parameter Block) and empty
FATs which agree with the capacity
of the disk. In order to do this,
you’d call the SenseMediaType
routine with fDefault set to False –
you don’t want the default state of
play, you’re interested in the disk
that’s physically in the drive now.

But suppose the disk is damaged
(after all, this might be why we’re

function SenseMediaType(Drive: Byte; fDefault: Bool; pdp: PDeviceParams):
 Integer;
var count: Integer;
begin
 FillChar (pdp^, sizeof (DeviceParams), 0);
 if not fDefault then
 pdp^.SpecFunc := 1;
 asm
 mov ax,440Dh { Specify generic IOCTL call }
 mov bl,Drive { BL = wanted drive number }
 mov cx,$0860 { Request device parameters }
 push ds { save DS register }
 lds dx,pdp { ds:dx points to param block }
 call Dos3Call { make the call }
 pop ds { restore DS register }
 jc @@1 { if error, return code in AX }
 xor ax,ax { else clear AX register }
 @1:
 mov count,ax { stash result in ’err’ }
 end;
 if count <> 0 then
 SenseMediaType := -1
 else for count := DF_360K to DF_28M do
 if pdp^.bpb.bsSectors = DiskTypes [count].sec then begin
 SenseMediaType := count;
 Exit;
 end;
end;

➤ Listing 1

24 The Delphi Magazine Issue 9

reformatting it) or suppose you
haven’t even put it in the drive yet?
In this case, the above call to
SenseMediaType will fail and we’ll
have to display a message stating
that the disk can’t be quick format-
ted. Because the punter (a techni-
cal term relating to the user of our
program!) has said that he wants to
quick-format the disk, he may not
have specified what disk capacity
he wants. Consequently, the
program has to ask DOS for details
of the default capacity of the drive
– that’s what happens when you
set fDefault to True. No disk has to
be in the drive, it’s purely an inter-
nal DOS call which doesn’t “hit” the
disk at all.

SenseMediaType also takes a third
parameter, a pointer to a new
structure called DeviceParams. The
layout of this data structure is
shown in Listing 2. The figures in
comments are hexadecimal offsets
into the structure.

The SpecFunc field is used to
control whether we’re getting the
default device parameter block for
a drive, or whether we’re examin-
ing the currently inserted disk.
This field is set up from the
fDefault parameter. Strictly speak-
ing, the SenseMediaType routine
only needs to return an integer
indicating the capacity of the
specified drive, but (as we shall see
later) there are other reasons for
needing access to the device
parameter block, which is why the
data structure is passed.

I will explain the other bits of this
data structure where relevant as
the rest of this month’s code is
discussed but, in passing, you’ll
also notice that there’s an undocu-

mented six-byte area at offset $20. I
have nowhere seen this mentioned
in the Microsoft documentation
and it was only through trial and
error, combined with some inten-
sive scrutiny of the Windows 3.1
File Manager code, that I was able
to infer the existence of this area.
But then, that’s par for the course
as far as these low-level routines
are concerned. The TrackLayout
information is very important and
is described later.

Introducing FormatDisk
The code in Listing 3 is the heart of
the FormatDisk routine itself. This is
a relatively high-level routine
which will ultimately be called
directly from the Delphi applica-
tion. It takes a drive specifier (1 for
drive A:, 2 for drive B:) and a Size
parameter which is an index into
the DiskTypes array that we looked
at last time.

Incidentally, the DiskTypes array
has also changed slightly from last
month. It now includes an extra
field which gives the total number
of clusters for each possible disk
capacity. If you’re interested in
playing around with this code, let
me strongly emphasise that you
should work with the code only
from one specific month’s disk.
Don’t try and mix this month’s
code with last month’s or bad
things might happen. If you end up
formatting your hard disk then
remember that you were warned!

This being the case, the first
thing the FormatDisk routine does is
check that the drive parameter is
either 1 or 2. Most of the DOS calls
I’m making simply won’t work with
hard disks, but it’s better to be safe

than sorry. There’s also a new
global variable, fAbort, to be used
by the host program to tell the disk
formatting code to stop. Typically,
you’d use this to implement a
Cancel button while the actual
formatting is in progress. In the
final version of the code, this vari-
able will be exported through the
interface part of the unit so that
it’s accessible to the host code.

Next, we call SenseMediaType to
get a device parameter block for
the required drive. The resulting
DPB (let’s call it that to be concise)
is stored in the OldDeviceParams
global. This is a very important
step, up to this point you might
have been thinking ‘Who cares
about DPBs and what are they for?’
The point is that DOS uses DPBs to
“switch” a floppy disk drive to a
particular capacity. If we wanted to
format a 720Kb disk in a 1.44Mb
drive then we first need to set the
drive to that capacity. Similarly, if
you wanted to format a 360Kb disk
in a 1.2Mb drive then you’d need to
switch to that format. Of course, if
a particular drive is already
“switched” to the required format
then you don’t need to change it.
What is important, though, is to
save the current drive configura-
tion and restore it at the end of the
format process. That’s why we
must store a copy of the drive’s
current DPB in OldDeviceParams.

It’s possible, incidentally, to set
up invalid combinations of drive
and capacity. For example, you can
set a 1.44Mb drive to format 360Kb
floppy disks – DOS won’t object,
but you might end up with a
strange diskette! In order to pre-
vent this happening, the FormatDisk
routine assumes that the higher-
level code will only request valid
drive/size combinations but, if you
wanted, you could use the drive
detection code from previous arti-
cles to put explicit checks into the
FormatDisk routine itself.

There are other ways of accom-
plishing the same task. At the ROM
BIOS level, there are calls for set-
ting floppy drives to a particular
capacity. However, from what I’ve
seen of Microsoft’s code, it’s best
to avoid the BIOS routines if at all
possible.

PDeviceParams = ^DeviceParams;
DeviceParams = record
 SpecFunc: Byte; { 00 }
 DevType: Byte; { 01 }
 DevAttrs: Integer; { 02 }
 Tracks: Integer; { 04 }
 MediaType: Byte; { 06 }
 bpb: BPB; { 07 }
 bsHidden2: Integer; { 1A }
 HugeSectors: LongInt; { 1C }
 Reserved: array [0..5] of Char; { 20 !! UNDOCUMENTED !! }
 { Start of TRACKLAYOUT information }
 SectorsPerTrack: Integer; { 26 }
 TrackLayout: array [0..35] of LongInt; { 28 }
end;

➤ Listing 2

May 1996 The Delphi Magazine 25

If you want to quick-format a
disk, then you pass a value of -1 as
the Size parameter to FormatDisk.
In this case, SenseMediaType is used
to determine the currently inserted
media type. If this routine fails,
(disk not inserted or completely
mangled) then the code offers to
format the disk at the default
capacity for that drive.

The next job is to call the
SetMediaType routine (Listing 4).
Using the default DPB block as a
starting point, it attempts to build
a new DPB which matches the
required capacity of the drive. In
order to do this, it primarily uses
the condensed BPB information
contained in the DiskTypes array.
You’ll notice that if a value of -1 is
passed for the Size parameter it
tells the routine to switch the drive
back to the default DPB. It’s called
in this way right at the end of the
FormatDisk code.

There’s another important job
which SetMediaType has to perform.
As we’ve already seen, there’s a
special ‘track layout’ area at the
end of a DPB. This is used to tell
DOS the size of each sector and the
order in which the individual
sector address marks are written
to the disk. In practice, disk sectors
are always the same size (512
bytes) and they’re arranged
consecutively around the track.

Going back to the FormatDisk rou-
tine, the procedure FormatInit is
called next. Having said that we’re
trying to avoid BIOS issues wher-
ever possible, for the sake of code
portability across different ma-
chines, there are some circum-
stances where this isn’t possible.
To put things another way, there
are some BIOSs which are so dumb
that they need a bit of a helping
hand. The software interrupt vec-
tor $1E isn’t really an interrupt at
all. Rather, it’s a pointer to a special
memory area called the disk

parameter table. This contains low-
level information that’s used by
your PC’s ROM BIOS to access the
floppy disk and, in particular, to
format disks. You might reason-
ably expect that this table would be
set up automatically by DOS when
we call SetMediaType, but mean-
while, back in the real world...

The FormatInit routine makes a
copy of the disk parameter table in
a global variable and sets up a
pointer to the ‘live’ parameter
table by establishing a pointer,
DiskParams. By making this pointer
of type PChar we can easily access
the disk parameter table as though
it were an ordinary array declared
inside our program. There are two
bytes which have to be tweaked:
the byte at offset 4 (fifth byte
along), which determines the num-
ber of sectors per track, and the
byte at offset 7, which tells the BIOS
how much of an inter-sector gap to
place between sectors when
formatting the disk.

function FormatDisk(Drive, Size: Integer): Integer;
label
 Stop;
var
 pDisk: PDiskType;
 TracksLeft, TotTracks, CurTrk, CurHead,
 CurSector,err, Cluster, SysSectors, DefSize,
 DiskSize, count: Integer;
begin
 { Assume failure and validate drive number }
 FormatDisk := -1;
 fAbort := False;
 if not Drive in [1..2] then
 Exit;
 { Stash current drive setup }
 DefSize := SenseMediaType(
 Drive, True, @OldDeviceParams);
 { If we’re quick-formatting, then auto-sense
 the current media }
 DiskSize := Size;
 if DiskSize = -1 then
 DiskSize := SenseMediaType (Drive, False, @dp);
 { If media not present or other error, slow-format }
 if DiskSize = -1 then begin
 if MessageDlg (’Can’’t quick-format this disk.’+
 ’ Format to default capacity?’, mtConfirmation,
 [mbYes, mbNo], 0) = mrNo then
 Exit;
 DiskSize := DefSize;
 end;
 { Establish wanted media size with DOS }
 if DiskSize <> DefSize then
 if SetMediaType (Drive, DiskSize) <> 0 then
 Exit;
 { Grab disk params table }
 pDisk := @DiskTypes [DiskSize];
 FormatInit;
 { Tweak disk params table for wanted format }
 DiskParams [4] := Chr (pDisk^.spt);
 if pDisk^.spt = 15 then
 DiskParams [7] := Chr ($54)
 else
 DiskParams [7] := Chr ($50);
 { Now we can format the tracks }
 if DiskSize = 0 then

 TotTracks := 80
 else
 TotTracks := 160; { Heads=2! }
 SysSectors :=
 (2*pDisk^.spf)+(((pDisk^.rde*32)+511)div 512)+1;
 TracksLeft := TotTracks;
 CurHead := 0;
 CurTrk := 0;
 { Only format tracks if not quick formatting }
 if Size <> -1 then begin
 { Main formatting loop }
 while TracksLeft <> 0 do begin
 { Let somebody else get a look-in! }
 Application.ProcessMessages;
 if fAbort then
 goto Stop;
 if FormatTrack (Drive, CurTrk, CurHead) = -1 then
 goto Stop;
 CurSector := ((CurTrk*2)+CurHead)*pDisk^.spt;
 count := CurSector;
 while count < CurSector + pDisk^.spt do begin
 Cluster := ((count-SysSectors) div pDisk^.spc)+2;
 FatMask[Cluster shr 3] := FatMask[Cluster shr 3]
 or (1 shl (Cluster and 7));
 Inc (count);
 end;
 Dec(TracksLeft);
 Inc(CurHead);
 if CurHead >= 2 then begin
 CurHead := 0;
 Inc (CurTrk);
 end;
 end;
 end;
 { Write a new boot sector to the disk }
 WriteBootSector (Drive, @TargetBPB);
 { Let somebody else get a look-in! }
 Application.ProcessMessages;
 if fAbort then goto Stop;
 { !!! WATCH THIS SPACE !!! }
 { ... }
Stop:
 SetMediaType (Drive, -1);
 FormatTerminate;
end;

➤ Listing 3

26 The Delphi Magazine Issue 9

Track Formatting
At this point, we’re all set to format
the track information onto the disk.
TotTracks is set to the total number
of tracks, allowing for the fact that
we’ve got tracks on both sides of a
double-sided disk! It’s used by
the main track formatting loop to
determine when we’re done.

You’ll notice that track format-
ting is omitted if quick-formatting
is selected (Size parameter is -1).
Otherwise, the code iterates along,
formatting a total of 80 tracks on a
double-sided 40 track disk, or 160
tracks on a double-sided 80 track
disk. Immediately before each
track is formatted, we call the
VCL’s Application.ProcessMessages
method which allows other
Windows applications to get a look
in. Under Windows 3.1, failing to do
this would lock out everything else
while the formatting operation was
in progress. Calling Applica-
tion.ProcessMessages also allows
the punter to press a cancel but-
ton, setting the fAbort variable.
This is also polled once around
each loop.

For the sake of space, I haven’t
provided a listing for the Format-
Track routine, suffice to say that it
uses another IOCTL call to format
a disk track. All the code discussed
this month is on the disk anyway.
The FatMask array is used to set up

an array of cluster masks. This in
turn is used to write the initial FAT
tables to the floppy disk – I’ll be
covering that next month.

If you’re concerned about maxi-
mum safety, you could easily mod-
ify the track formatting code so
that it started with the innermost
tracks and worked its way out-
wards. The advantage of this is that
the most important parts of a disk
(the BPB, FATs and directory infor-
mation) are located on the first few
tracks. If you ever accidentally
start formatting a disk and sud-
denly realise that your business
data is going up in smoke, format-
ting from the outermost tracks last
will generally enable you to re-
cover much of your data provided
that the formatting process hasn’t
proceeded too far.

It’s also nice, in any decent for-
matting program, to provide some
visual indication of how far along
the formatting process is. I’ll be
adding an application-supplied
progress hook next month.

Once the tracks have been for-
matted, the final job, for now, is to
call the WriteBootSector routine. As
the name suggests, the purpose of
this code is to create a valid boot
sector image and write it to the
beginning of the disk. The boot sec-
tor image contains a BPB, the serial
number of the disk and a certain
amount of machine code which
tries to load the IO.SYS and

MSDOS.SYS files into memory. For
reasons of simplicity (this thing is
taking far too long as it is!) I made
the decision not to support the
creation of bootable, system disks,
but the boot sector image code is
valid in case you want to add this
feature.

The boot sector image is con-
tained in the global FloppyBoot ar-
ray. This is a valid image taken from
an existing 1.44Mb diskette. The
WriteBootSector code takes this im-
age, adds in an appropriate BPB
(this is why the SetMediaType rou-
tine stashes away a copy of the
newly-created BPB in the TargetBPB
variable, so that we can re-use it
here) and then calls the GenSerial-
Number routine to dream up an ac-
ceptable serial number for the disk.
As you can see, this code simply
combines the current date and
time into a 32-bit number that con-
stitutes the disk serial number.
Since this includes a 1/100th sec-
ond count, there’s no possibility of
winding up with two diskettes with
the same serial number unless you
format them on two machines si-
multaneously or start fiddling
around with your PC’s date/time
settings. The algorithm used here
is the same as that used by the
Windows File Manager. When
Microsoft first added serial num-
bering to floppy disks there was
considerable debate in the on-line
programming community as to

function SetMediaType (Drive, Size: Integer): Integer;
var
 err: Byte;
 p: Pointer;
 sec: Integer;
 dp: DeviceParams;
begin
 { Use default diskparams as starting point }
 dp := OldDeviceParams;
 if Size = -1 then
 dp.SpecFunc := 4
 else begin
 { Set up ’dp’ according to wanted disk size }
 dp.SpecFunc := 5;
 dp.DevType := Size;
 if Size = 3 then dp.DevType := 7;
 if Size = 4 then dp.DevType := 9;
 if Size = 0 then begin
 dp.Tracks := 40;
 dp.MediaType := 1;
 end;
 dp.bpb.bsBytesPerSec := 512;
 dp.bpb.bsSecPerClust := DiskTypes [Size].spc;
 dp.bpb.bsResSectors := 1;
 dp.bpb.bsFATs := 2;
 dp.bpb.bsRootDirEnts := DiskTypes [Size].rde;
 dp.bpb.bsSectors := DiskTypes [Size].sec;
 dp.bpb.bsMedia := DiskTypes [Size].med;

 dp.bpb.bsFATsecs := DiskTypes [Size].spf;
 dp.bpb.bsSecPerTrack := DiskTypes [Size].spt;
 dp.bpb.bsHeads := 2;
 dp.bpb.bsHidden1 := 0;
 TargetBPB := dp.bpb;
 dp.bsHidden2 := 0;
 dp.HugeSectors := 0;
 dp.SectorsPerTrack := dp.bpb.bsSecPerTrack;
 for sec := 0 to dp.SectorsPerTrack - 1 do
 dp.TrackLayout [sec] := MakeLong (sec + 1, 512);
 end;
 { Now tell DOS this is what we want! }
 p := @dp;
 err := 0;
 asm
 mov ax,$440D { specify generic IOCTL call }
 mov bl,byte ptr Drive { BL = drive number }
 mov cx,$0840 { set device parameters }
 push ds { save DS on stack }
 lds dx,p { get pointer to ParamBlock }
 call DOS3Call { do the business... }
 pop ds { restore DS register }
 jnc @@1 { branch if no error }
 mov err,ah { stash error code }
 @1:
 end;
 SetMediaType := err;
end;

➤ Listing 4

28 The Delphi Magazine Issue 9

what algorithm was being used.
Well, here it is in all its glory – not
really much to it, is there?

Well, that’s it for this month.
Next month, it’s my intention
either to finish this disk formatting
saga or else ritually disembowel
myself. And no, you don’t get to
express a preference!

When not sharpening his ceremo-
nial Japanese disembowelling
sword, Dave Jewell is writing a
new book on 32-bit Delphi and the
Windows API. If he lives that long,
it’s due to be published around
the middle of the year by Wrox
Press. If you want to send flowers
to his widow, she will be monitor-
ing Dave’s email on CIX as
djewell@cix.compulink.co.uk, on
CompuServe as 102354,1572 or as
DSJewell on America OnLine.

Copyright © 1996 D S Jewell.

function GenSerialNumber: LongInt; assembler;
asm
 mov ah,$2A { request system date }
 call DOS3Call { result in CX:DX }
 push cx { push year part }
 push dx { push month/day }
 mov ah,$2C { request system time }
 call DOS3Call { result in CX:DX }
 pop ax { pop month/day }
 add ax,dx { add to seconds/100 }
 pop dx { pop year part }
 add dx,cx { add hours/minutes }
end;

function WriteBootSector (Drive: Byte; SrcBPB: PBPB): Integer;
const
 BPBSig: array [0..7] of Char = ’FAT16 ’;
var
 DestBPB: PBPB;
 i: Integer;
 SerNum: LongInt;
 BootSector: array [0..511] of Byte;
begin
 { Get a copy of the default boot record }
 Move (FloppyBoot, BootSector, sizeof (BootSector));
 { Add the BPB for this specific disk capacity }
 DestBPB := @BootSector [11];
 DestBPB^ := SrcBPB^;
 { Init extended boot stuff }
 for i := $1E to $24 do
 BootSector [i] := 0;
 SerNum := GenSerialNumber;
 Move (SerNum, BootSector [$27], sizeof (SerNum));
 Move (BPBSig, BootSector [$36], 8);
 WriteBootSector := WriteAbs (@BootSector, Drive, 0, 0);
end;

➤ Listing 5

May 1996 The Delphi Magazine 29

	Media Sensing Revisited
	Introducing Format Disk
	Track Formatting

